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CREW FERFORMANCE DURING REAL-TIME LTJNAR MISSION SIMULATION 

By Howard G. Hatch, Jr., Joseph S. Algranti, 
Donald L. Mallick, Harold E. Ream 

Langley Research Center 

and Glen W. S t inne t t  
Ames Research Center 

SUMMARY 

I n  order t o  study the  performance of a crew i n  prolonged space f l i g h t ,  a 
simulation w a s  made of a lunar  landing mission beginning with launch from ea r th  
and terminating a f t e r  ea r th  reentry.  
interconnected mock-ups of a command module and a lunar o r b i t  rendezvous vehi- 
c le ,  flew three  r e a l i s t i c a l l y  simulated missions. P i lo t ing  performance w a s  eval- 
uated by comparison of accuracies achieved during the  simulated missions with 
the  base-line data obtained during t ra in ing .  The areas  evaluated included crew 
proficiency i n  normal mission dut ies ,  crew a l e r tnes s  t o  emergency s i tua t ions ,  
the  e f f e c t s  of duty cycles and physical conditioning, and crew psychophysiolog- 
i c a l  reaction. The study showed no decrement i n  performance of mission t a sks  
with t e s t  p i l o t  personnel f o r  confinement periods up t o  7 days and t h e  a l e r t -  
ness of t he  crew remained high throughout the mission. It w a s  found t h a t  a 
26-hour duty cycle with two 4-hour s leep periods w a s  more desirable  than a 
24-hour duty cycle with one 8-hour s leep period. 
c i se  program, there  w a s  no de te r iora t ion  of physical  condition. 
and psychological t e s t s  indicated no psychophysiological s t r e s s  reaction due t o  
the  confinement during the  7-day mission time. 

Three t ra ined  t e s t  p i l o t s ,  enclosed i n  two 

Because of the onboard exer- 
Also, medical 

INTRODUCTION 

One of t h e  mny problems facing crews on future  space f l i g h t s  i s  the  length 
of time required and i t s  e f f e c t  on mission completion. Results of numerous sim- 
u la t ion  s tudies  show t h a t  p i l o t s  can perform various spec i f ic  space flight con- 
t r o l  t a sks  ( f o r  example, refs. 1 t o  4), but  l i t t l e  i s  known about t he  e f f e c t  of 
t h e  long mission duration on p i l o t  performance during these tasks .  
t he  simplest circumlunar mission of the b 6 l l i s t i c  f r e e - f a l l  type, f l i g h t  times 
of about '7 days w i l l  be required. Round-trip missions t o  the  nearest  p lane ts  
may require  many months o r  years of f l i g h t  time depending on the avai lable  pro- 
pulsion systems. I n  addi t ion t o  the t b e  element, some d i f f i c u l t i e s  may arise 
as a r e s u l t  of the  s m a l l  volume ava i lab le  f o r  working and l i v i n g  quar te rs  and 
the  r e s t r i c t e d  sensory-input environment. 
f ac to r s  may pose both physiological and psychological problems f o r  t he  crew. 

Even f o r  

It has been suggested that these 
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A s  pointed out i n  references 5 and 6, some biomedical s tudies  of the  e f f ec t  of 
"sensory deprivation" and confinement have been made, and the findings of these 
s tudies  have been extended as being per t inent  t o  the  conditions of space f l i g h t .  
However, doubt may be cas t  on extending the  findings of these s tudies  t o  future  
space f l i g h t s  f o r  the following reasons: f i r s t ,  the  nonrea l i s t ic  environment 
u t i l i z e d  i n  most of t he  studies;  second, t he  lack  of any c r i t e r i a  for select ing 
the  subjects; and t h i rd ,  the  performance of du t i e s  which were not applicable t o  
space missions. 

I n  order t o  obtain da ta  from a study not subject t o  these cr i t ic isms,  the  
National Aeronautics and Space Administration has sponsored a real-time lunar 
mission s i m l a t i o n  using as crew members three NASA t e s t  p i l o t s  who were 
enclosed i n  a r e a l i s t i c  spacecraft cabin environment and performed dut ies  appli-  
cable t o  a lunar mission. This invest igat ion w a s  conducted by Martin Marietta 
Corporation f o r  t he  NASA under contract  NAS-1-1861 and i s  reported i n  refer-  
ence 5 ,  the  f i n a l  report  from the  contractor t o  the  NASA. Brief reports  of the  
invest igat ions have been presented i n  references 7 and 8. 

The mission dut ies  consisted of representat ive analog simulated f l i g h t -  
control  tasks and a l so  simulated navigational and systems monitoring and manage- 
ment tasks.  Two types of lunar  landing were studied, t he  d i r ec t  landing and 
t h e  lunar  o r b i t  rendezvous (LOR). The d i r e c t  landing requires the  whole space- 
c r a f t  t o  land on the  lunar surface; whereas f o r  LOR a s m a l l  vehicle i s  detached 
from the main orb i t ing  spacecraft ,  descends t o  the lunar surface, and then 
re turns  t o  jo in  the  main spacecraft  by means of a lunar o r b i t  rendezvous. 

The object of t h i s  study i s  t o  determine whether t h e  s t r e s s f u l  conditions 
of confinement and long-time f l i g h t ,  with t h e  associated r e s t r i c t ed  sensory 
environment, would have an e f f ec t  on the performance of f l ight-control  tasks  
and other mission tasks .  I n  addition, other f ac to r s  t h a t  would have an effect  
on crew performance, such as the  type of duty cycle u t i l i z e d  and the  physical 
f i t n e s s  of the  crew, were included as study areas .  

I n  order t o  evaluate crew performance systematically, a base-line s e t  of 
c r i t e r i a  w a s  es tabl ished from a pref l igh t  t r a in ing  phase. The t ra in ing  phase 
covered a 10-week in t e rva l  and included a l l  mission tasks  and emergency proce- 
dures. I n  addition, a pref l igh t  physical conditioning program and an in- f l igh t  
physical  exercise program were designed f o r  t h e  crew by a professional physical 
therap is t .  Also, t he  crew were given medical and psychological t e s t s  during 
the  t ra in ing  phase and a f t e r  the  simulation runs t o  determine i f  there were any 
signs of physiological o r  psychological s t r e s s .  

Performance w a s  evaluated from consideration of the  following main areas:  
normal mission dut ies ,  including simulated f l i g h t  control  tasks  and a le r tness  
t o  emergency s i tuat ions;  evaluation of duty cycles; physical  condition of the 
crew before and a f t e r  t he  f l i g h t s ;  and the  use of various psychophysiological 
measures as indices of react ion or  tolerance t o  s t r e s s .  

Three simulated missions o r  f l i g h t s  were undertaken; t he  f irst  two las ted  
75 hours and the  t h i r d  l a s t ed  168 hours. Two duty cycles were studied; a 
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24-hour cycle which contained 8 uninterupted hours of sleep and a 26-hour cycle 
which contained two 4-hour periods of uninterrupted sleep. 

SYMBOLS 

The B r i t i s h  system of u n i t s  i s  used i n  t h i s  study. I n  case conversion i s  
desired, the following relat ionships  may be used: 

1 U.S. foot  = 0.3048006 meter 

1 internat ional  naut ical  mile = 1852 meters (exact) 

g acceleration due t o  ear th  gravity, 32.2 f t / sec2  

h vehicle a l t i t u d e ,  f t  

h rate of change of a l t i t ude ,  f t / s e c  

F vehicle th rus t ,  l b  

V vehicle velocity,  f t / s e c  

AV veloci ty  increment during thrust ing phases, f t / s e c  

W ear th  weight of the vehicle, lb 

X,Y,Z coordinates of rendezvous vehicle i n  right-hand system centered at 
main spacecraft center of gravity with Z - a x i s  along radius vector 
from center of moon and Y - a x i s  perpendicular t o  radius vector, 
f t  

. . .  
X,Y,Z time r a t e  of change of x-, y-, and z-displacement, respectively, 

f t / s e c  

e vehicle p i t c h  angle, deg 

IJ vehicle yaw angle, deg 

# vehicle r o l l  angle, deg 

e p i t c h  rate, deg/sec 

i yaw rate, deg/sec 

$ r o l l  rate, deg/sec 
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Sub sc r ip t s  : 

e e r ro r  

f f i n a l  

LUNAR MISSION DESCRIFTION 

Trajectory Character is t ics  

The basic  operation used f o r  t h i s  invest igat ion w a s  a lunar mission, which 
included a l l  t he  phases shown i n  f igure 1, from launch through return reentry 
in to  the ea r th  atmosphere and touchdown. Note t h a t  both d i r ec t  and LQR lunar 
landings are l i s t e d ,  but an ac tua l  mission would incorporate one o r  the other. 
For the pa r t i cu la r  mission under consideration, launch from ea r th  was termi- 
nated with the  vehicle i n  a 100-nautical-mile ea r th  o rb i t ,  where it remained 
f o r  about an hour before inser t ion in to  t h e  t ranslunar  orb i t .  The inser t ion 
required an increase i n  veloci ty  of 10,000 f t / s ec .  
three midcourse corrections were required and t h e  veloci ty  increments used were 
l e s s  than 30 f t / sec .  The f i rs t  two of these corrections took place within the 
f i r s t  24-hour period a f t e r  translunar inser t ion ,  and the  t h i r d  within 12 hours 
before inser t ion i n t o  lunar o rb i t .  The spacecraft reached the  point of lunar  
o rb i t  inser t ion  a f t e r  70 hours with a veloci ty  of 8,300 f t / sec .  
t he  100-nautical-mile lunar o r b i t  required a decrease i n  veloci ty  of 
3,000 f t / s e c  t o  slow down t o  the  o r b i t a l  veloci ty  of 5,300 f t / sec .  
the  lunar surface began 30 minutes l a t e r .  The landing began with an i n i t i a l  
deorbit  impulse and the  vehicle then coasted down t o  about 43,000 f ee t  where 
the  f i n a l  braking slowed the  vehicle down t o  landing velocity.  T h i s  type of 
landing t r a j ec to ry  w a s  used f o r  both the  d i r ec t  and the  LOR landings. I n  both 
cases i f  t h e  landing phase w a s  aborted f o r  any reason, such as system f a i l u r e s  
o r  solar  f lare  warnings, the  p i l o t s  followed a standardized abort  procedure 
tha t  returned the  vehicle t o  lunar orb i t .  

During the  t ranslunar  o rb i t ,  

Achievement of 

Descent t o  

Return t o  ea r th  after a successful landing on the  moon began with a launch 
in to  lunar  o rb i t ,  then inser t ion in to  a t ransear th  orb i t .  
lunar surface f o r  e i t h e r  type landing w a s  s i m i l a r  except f o r  the rendezvous 
required i n  the LOR method. 
required about 1 /2  hour. 
attainment. 

The ascent from the 

Launch and ascent t o  the  100-nautical-mile-orbit 
Transearth inser t ion  occurred 1/2 hour a f t e r  o rb i t  

Three midcourse corrections were required as the  vehicle  t raveled along 
the t ransear th  o rb i t  before reaching the  point of reentry in to  the  ear th  atmos- 
phere. The reentry covered about one-fourth the  ea r th  perimeter, o r  some 
6,000 miles of longi tudinal  range before touchdown on the  ea r th  surface. 

C r e w  Composition 

For this mission, the crew consisted of th ree  men: the  commander, naviga- 
t o r ,  and engineer, each capable of performing the  tasks  assigned the  other two. 
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The work load on the crew included such tasks  as f l i g h t  control, naviga- 
t i on ,  and systems management and monitoring. The f l ight-control  tasks,  which 
consisted of operating the  controls of the  spacecraft propulsion i n  order t o  
maintain i t s  proper speed and direction, were the responsibi l i ty  of the  commander 
who w a s  i n  charge of the  crew and the spacecraft. 
s i b i l i t y  consisted of obtaining s ta r - f ix  data by means of a sextant device and 
entering these data i n  an onboard computer. Systems monitoring and management 
tasks  (engineer ' s  main respons ib i l i ty  during thrust ing phases) required the 
crew t o  maintain all the systems and subsystems within specified tolerances,  
detect  and correct malfunctions, and perform troubleshooting and corrective 
maintenance. 

The navigator 's  main respon- 

lEfENT OF SIMULATION 

Simulation Program 

I n  the present investigation, three lunar mission simulations (or  f l i g h t s )  
were conducted over a period of 6 weeks, allowing a 1-week layoff i n t e rva l  
between each flight. T h i s  6-week period was preceded by a 10-week or ientat ion 

and t ra in ing  period. The first two flights of > - d a y  duration simulated the 

described mission up t o  the point of t ransear th  inser t ion  (following lunar 
take-off'). The t h i r d  flight , however, simulated thg en t i r e  7-day mission. 
Each flight w a s  designed t o  simulate an ac tua l  precomputed lunar mission tra- 
jectory as closely as possible; however, i n  order t o  obtain as much data as 
possible, the f l i g h t s  deviated from the basic  lunar mission sequence i n  cer ta in  
instances. This deviation included a closed-loop study of both types of lunar 
landings: the  d i r ec t  and the  LOR w i t h  i t s  associated Lunar rendezvous. Each 
of the three crew members performed both types of lunar landings, and each per- 
formed an ea r th  reentry. Thus, a rearrangement of t he  mission times w a s  needed 
t o  include the ex t ra  f l igh t -cont ro l  phases and s t i l l  maintain the proper over- 
a l l  mission time; this w a s  accomplished by omitting some of the  translunar and 
t ransear th  coasting periods. Four NASA p i l o t s  par t ic ipated i n  the  program and 
they w i l l  be referred t o  as p i l o t s  A, B, C y  and D. P i lo t  D par t ic ipated only 
as an observing crew member i n  f l i g h t  11. P i l o t s  A and B par t ic ipated i n  all 
three flights . 

1 
2 

Simulation Equipment 

A plan view of the simulation f a c i l i t y  i s  shown i n  f igure 2. This  f a c i l -  
i t y  i s  located a t  the  Baltimore Division of the Martin Marietta Corporatfon. 
The f a c i l i t y  consis ts  of three main areas: the  simulation room, control room, 
and analog computer room. 

The simulation room housed two interconnected simulators. The room w a s  
air  conditioned, Ught proof, and p a r t i a l l y  sound attenuated. The main simu- 
l a t o r  w a s  a mock-up of an Apollo-type command module. The external configura- 
t i on  consisted of a conical forebody with a half-angle of 30°, a base diameter 
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of 166 inches, and a hedsphere of 17-inch radius a t  the  apex. 
sions gave the  simulator approximately 400 cubic feet of enclosed volume. 
external  view i s  shown i n  figure 3 .  The i n t e r n a l  volume provided f o r  a f l i g h t  
deck, sleeping area,  off-duty area,  t o i l e t ,  and galley.  The f l i g h t  deck, as 
shown i n  figure 4, provided side-by-side seat ing f o r  t he  three crewmen i n  f ront  
of the  display control  panel. Facing the  panel from l e f t  t o  r igh t  are  the  
posi t ions of the  commander, navigator, and engineer, respectively.  The section 
i n  f ront  of each pos i t ion  w a s  color coded t o  separate t h e  functions of each 
crew member, but t h e  e n t i r e  panel could be monitored from the  center posit ion.  
Along the  upper periphery of the  e n t i r e  control  panel were located event 
sequencing l i g h t s  and malfunction warning l i g h t s .  

These dimen- 
An 

The commander's pos i t ion  provided f o r  maintaining bas ic  flight control.  
Controls included a t h r o t t l e  f o r  t r ans l a t ion  and a two-axis side-arm control ler  
and rudder pedals f o r  a t t i t u d e  control. H i s  displays provided an indication of 
a l l  the  per t inent  flight var iables .  
f o r  special  displays,  a three-axis a t t i t u d e  indicator ,  and angular rate 
indicators .  

Among these were a cathode ray tube (CRT) 

The navigator 's  panel i n  the center served as a standby f l igh t -cont ro l  
a rea  f o r  emergency backup of the  commander and, therefore ,  had redundant a t t i -  
tude indicators  and cont ro l le rs  (p i tch  and r o l l  side-arm cont ro l le r  and yaw 
rudder pedals) and a special-purpose CRT display. 
t i o n  had access t o  navigational equipment such as clocks and timers, i n e r t i a l  
platform controls, onboard computer controls,  communications controls, and an 
overhead t r i s ex tan t  above which a display of stars and planets  was avai lable  
f o r  obtaining navigational data. 

I n  addition, the  center posi- 

The engineer 's  panel at t h e  right contained displays which presented infor-  
mation on various onboard systems such as environmental, e l e c t r i c  power, and 
propulsion systems, and indicat ions of radiat ion and meteorite impacts. 

The LOR vehicle simulator w a s  attached t o  the  command module simulator by 
a 12-foot tunnel,  as shown i n  f igure  5. It resembled t h e  cockpit of a one-man 
a i r c r a f t  and w a s  used only during t h e  LOR landing and rendezvous phases. 
l a rge  plexiglass  windshield w a s  provided i n  order t o  view the  rendezvous t a rge t  
moving across a star f i e l d  t h a t  w a s  projected on t h e  w a l l  i n  f ront  during the  
rendezvous phase. 
the  same amount of f l igh t -cont ro l  in fomat ion  as the  commander's section of the  
command module simulator panel, but it w a s  arranged somewhat d i f fe ren t ly .  

A 

The display and control  panels of t h e  LOR vehicle contained 

The control  room w a s  located adjacent t o  t h e  simulator room, where the  
f l i g h t s  were coordinated and monitored by means of closed-circuit  te levis ion.  
I n  the  control  room there  were 12 consoles used t o  produce r e a l i s t i c  displays 
on the  display and control  panels i n  the  simulators. The consoles.provided an 
indicat ion of t he  meter readings on the  display and control  panels i n  the  s i m -  
u la tors .  
on t h e  simulator display and control  panels. 

&so, t he  consoles were equipped with means t o  vary the  meter readings 

A t o t a l  of 262 operational amplif iers  were used t o  progr 
control  phases of t he  simulation on the  analog computing e q u g e n t .  

t he  f l i g h t -  
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TASK DESCRIPTION 

Computation Techniques 

The various f l ight-control  tasks were mechanized by a closed-loop analog 
computer simulation of each of the  phases shown i n  f igure  1. I n  these tasks ,  
the p i l o t  observed the  display on the  display and control  panel and responded 
with inputs t o  the  t h r o t t l e s  and a t t i t ude  control lers .  These control inputs 
were fed t o  a s e t  of perturbation equations which determined the  simulated 
vehicle motion about a predetermined t ra jec tory  f o r  a l l  mission phases except 
the braking part of lunar  landing and rendezvous. 

For the braking pa r t  of lunar landing a three-degree-of-freedom simulation 
w a s  programed, providing two t r ans l a t iona l  degrees of freedom i n  the  v e r t i c a l  
plane and one ro ta t iona l  degree of freedom about t he  p i t ch  axis. The p i l o t  
could control  yaw and r o l l ,  but these were uncoupled and did not a f f ec t  the  
t ra jec tory .  The rendezvous equations allowed three degrees of freedom i n  
t rans la t ion ,  with the  vehicle a t t i t ude  s tabi l ized.  

Flight-Control Tasks 

The p i l o t ' s  job during ea r th  ascent w a s  t o  maintain the vehicle a t t i t ude  
i n  yaw and r o l l  at zero while following a p i t ch  program and a l s o  t o  stage the  
launch vehicle at t h e  proper t i m e s .  During t ranslunar  inser t ion,  midcourse 
correction, lunar o rb i t  inser t ion,  lunar deorbit ,  lunar  ascent, and t ransear th  
inser t ion,  t he  p i l o t ' s  t a sk  consisted mainly of control l ing the  proper vehicle 
a t t i t u d e  while applying t h r u s t  t o  achieve the  required veloci ty  changes using 
the  proper engine management. The CRT displays used i n  these phases a re  shown 
i n  f igures  6(a) and 6(b) .  
w a s  incorporated and AV corrections were obtained from a d i g i t a l  readout. 

After t he  f i r s t  two f l i g h t s ,  a change i n  the  display 

The simulation of the  lunar-landing phase w a s  based on t h a t  of reference 1. 
The same nominal t r a j ec to ry  w a s  used f o r  both the  d i r ec t  and the  LOR landings, 
although vehicle dynamics and engine combinations appropriate t o  each were used 
i n  t h e i r  respective simulations. The main vehicle had a rate-command a t t i t ude  
control  system, whereas t h e  LOR vehicle had an acceleration a t t i t ude  control 
system. 
e l l i p t i c a l  coasting path f o r  25 minutes u n t i l  an a l t i t u d e  of 43,000 f e e t  w a s  
reached. 
path angle w a s  -4.35O; here the  p i l o t  took over the  controls  again for the  
f i n a l  braking and landing. 
both vehicles,  but t he  LOR vehicle w a s  more responsive i n  a t t i t ude  than the  
main vehicle. The nominal a l t i tude-Seloci ty  curve of the  f i n a l  braking and 
landing i s  shown i n  f igure  7. During t h i s  braking maneuver, the p i l o t ' s  CRT 
display ( f ig .  6 ( c ) )  consisted of a s t a t i c  p lo t  of the  nominal a l t i tude-veloci ty  
curve and a pitch-error and range-rate-error indication. The ac tua l  veloci ty  
and a l t i t u d e  of the  vehicle were shown by a dynamic dot that followed the  curve 
as long as the  p i l o t  maintained zero pitch-angle e r ro r .  If the  dot d r i f t ed  
away from the curve, t he  p i l o t  then disregarded t h e  pitch-error indicat ion and 

The t r a j ec to ry  w a s  i n i t i a t e d  a t  lunar deorbi t  and consisted of an 

A t  t h i s  a l t i t u d e  the  vehicle veloci ty  w a s  5,533 f t / s e c  and t h e  f l i gh t -  

Also, t he  m a x i m u m  thrust-weight r a t i o  was 0.672 for 
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a m l i e d  the  proper controls t o  bring the dot back t o  the curve. This procedure 
w a s  followed u n t i l  a landing veloci ty  of 160 f t / s e c  was reached. The commanded 
p i tch  angle had been a very slow rate but, when 160 f t / s e c  w a s  reached, a rapid 
r a t e  of p i t ch  t o  90' w a s  commanded. 
t he  vehicle w a s  reduced t o  100 f t / s ec  at  about an a l t i t ude  of 1,000 fee t .  From 
t h i s  point t o  touchdown an a l t i t u d e  indication appeared at  the  right of the  CRT 
and the p i l o t s  made a v e r t i c a l  descent t o  touchdown. 
pleted at a m a x i m u m  value of F/W of 0.294. 

During t h i s  time the  landing veloci ty  of 

The last  phase w a s  com- 

In  order t o  determine the p i l o t ' s  a b i l i t y  t o  recover from an emergency 
s i tuat ion,  an abort procedure w a s  designed f o r  both t h e  main and excursion 
landings. The crew were given pract ice  abort runs during the  t r a in ing  phase. 
During the  f l i g h t s ,  several  of the landings became surprise aborts because of 
simulated system failures. 

The main vehicle abort procedures were as follows: 

(1) Cut t h e  lunar-landing-module engines 

(2) Separate the lunar-landing module 

( 3 )  Igni te  the service-module engines 

(4) Pi tch t o  100' and r o l l  t o  160' (160' w a s  used instead of the 
desired 180° because of computer l imitat ions)  

( 5 )  Complete the aborted f l i g h t  as though f ly ing  a normal ascent 
t r a j ec to ry  

The LOR vehicle abort  procedures were as follows: 

(1) Apply full th rus t  

(2) Pi tch t o  100' and r o l l  t o  160° 

( 3 )  Complete abort t r a j ec to ry  as i f  f ly ing  a normal ascent t ra jec tory  

I n  the  simulation of the  rendezvous phase, the  LOR vehicle w a s  a t t i t ude  
s tab i l ized  and w a s  provided with rockets f o r  t r ans l a t ion  control i n  both direc- 
t ions  along each body axis.  Also, two leve ls  of' t h rus t  w e r e  available providing 
0.1 g o r  0.01 g accelerat ion i n  each direction. The same i n i t i a l  conditions 
used f o r  both the  base-line and the  f l i g h t  runs were as follows: 
c l e  was 30,000 feet below, 30,000 feet ahead of, and 5,000 f ee t  t o  the  side of 
the  orb i t ing  vehicle which was passing overhead at a r e l a t ive  rate of 300 ft /sec.  
The orb i t ing  vehicle first appeared t o  the p i l o t  as a f lashing dot i n  the  pro- 
jected s t a r f i e l d  i n  f ront  of the simulator a s  he looked out the  windshield. 
H i s  f irst  task  w a s  t o  center the  dot i n  his f i e l d  of view. When t h i s  w a s  
accomplished, his CRT w a s  activated and used f o r  the remainder of the  f l i g h t .  
The CRT displayed the posi t ion of t he  orbi t ing vehicle i n  the  horizontal  plane 
as a dot r e l a t ive  t o  a se t  of crosshairs,  whereas growth of the  dot in to  a 
c i r c l e  provided v e r t i c a l  displacement information. Rates were obtained by 
r a t e  of change i n  displacement of the  dot and r a t e  of growth of the  dot in to  
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a c i r c l e .  
l a t ed  l ens  se t t i ngs  were avai lable  which corresponded t o  a 45O and a 2' f i e l d  
of view. 
used only when the dot w a s  centered i n  the  crosshairs.  The p i l o t ' s  t ask  w a s  t o  
center the  dot i n  the crosshairs ,  which indicated the  orb i t ing  vehicle w a s  
d i r ec t ly  overhead, and then t o  keep the growing c i r c l e  centered as he approached 
the  orb i t ing  vehicle ve r t i ca l ly .  
the docking phase, when the v e r t i c a l  displacement became l e s s  than 150 f e e t ,  
the  p i l o t ' s  readings were confirmed by ground monitors because of onboard d is -  
play l imi ta t ions .  

The CRT display ac tua l ly  represented a periscope view and two simu- 

The 2 O  se t t i ng  allowed very sens i t ive  posi t ion indicat ions and was 

In order t o  provide the  accuracy required f o r  

The reentry t r a j ec to ry  followed w a s  a skip-glide type a6 shown i n  f igure  8. 
This t r a j ec to ry  w a s  generated by means of a d i g i t a l  simulation program tha t  
used a predict ive guidance scheme ( r e f .  2) .  The i n i t i a l  conditions assumed 
were veloci ty ,  36,000 f t / s e c ;  a l t i t u d e ,  400,000 f e e t ;  and f l igh t -pa th  angle, 
-70; and the  vehicle had a l i f t - d r a g  r a t i o  of 0.5. There w a s  no i n i t i a l  l a t -  
e r a l  range e r r o r  assumed, and the  touchdown point w a s  5,900 in te rna t iona l  nau- 
t i c a l  miles away. To achieve t h i s  range, the  guidance scheme required a skip 
accompanied by several  r o l l  maneuvers. These r o l l  maneuvers consisted of 
reversing the r o l l  angle a t  four  specified times along the t ra jec tory .  
order t o  follow this t r a j ec to ry ,  the  p i l o t  had t o  maintain the proper a l t i t u d e  
and r a t e  of change of a l t i t u d e .  To a i d  i n  accomplishing t h i s  task,  the  p i l o t  
w a s  given the CRT display shown i n  f igure 6(d).  I n  the  middle of the display 
an indicat ion of t he  a l t i t u d e  e r r o r  and a l t i t u d e  r a t e  e r r o r  was given. Around 
the  periphery the  command r o l l  angle w a s  presented as a small c i r c l e  and the  
t r u e  r o l l  angle was presented as a dot. 
zontal  l i n e  at the  lower p a r t  of  t h e  screen t o  give the  p i l o t  an indicat ion of 
an approaching r o l l  reversa l  command. 

I n  

A cursor w a s  presented along the hori-  

The p i l o t ' s  t a sk  w a s  t o  follow the  commnded r o l l  angle while maintaining 
trimmed a t t i t ude .  
I f  an e r r o r  w a s  accumulated i n  a l t i t u d e  or a l t i t u d e  r a t e ,  t he  commanded r o l l  
angle w a s  ignored and the vehicle w a s  ro l led  u n t i l  the  e r r o r s  were nulled, then 
the p i l o t  resumed t h e  commanded roll angle. 

Pi tch.and yaw were uncoupled but  provided a p i lo t ing  task.  

Other Mission Tasks 

The navigational t a sks  were simulated by taking readings of star posi t ions 
through a t r i s e x t a n t  shown i n  f igure  9. A s l ide  projector  w a s  used t o  project  
a r e a l i s t i c  s t a r f i e l d  on a screen above the t r i s ex tan t .  The readings were 
entered i n t o  a modified addi t ion machine t o  simulate enter ing the  data  i n t o  an 
onboard computer. 

The systems monitoring and management t a sks  were simulated by ac t iva t ing  

- i n  t he  control  room provided meter readings on the  panels and thus var ia t ions  
meters on the f l i g h t  panel from switches i n  the cont ro l  room. 

i n  d i f f e ren t  subsystems could be simulated. The crew could respond by 
adjust ing various controls  at the  panel t o  maintain proper meter readings. 

Switch pos i t ions  
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Duty Cycles 

The duty cycle u t i l i z e d  during a mission of t h i s  so r t  could a i d  i n  a l l e -  
v i a t ing  e f f ec t s  of confinement. The e f f e c t s  of two duty cycles were studied 
during t h i s  program. 
which included an 8-hour uninterrupted sleep period and the second w a s  a 
26-hour cycle with two &-hour uninterrupted s leep periods. 

A s  shown i n  f igure 10, the f i r s t  w a s  a 24-hour cycle 

The basic  arrangement of t he  duty cycles w a s  f o r  one man on duty, one 
off duty, and one asleep a t  a l l  times except during thrus t ing  phases and other 
instances i n  which two, or a l l  three,  crew members were required t o  be on duty 
a t  t h e  same t i m e .  Thus, the  general form given i n  f igure 10 could not be fo l -  
lowed at a l l  times. Some fac to r s  t h a t  were included i n  the design of the  cycles 
were an attempt t o  have an off-duty period before and a f t e r  each sleep period, 
duty periods of not longer than 2 hours a t  a s t r e t ch  and a reasonably repeat- 
able  cycle. 

Physical Conditioning 

The crew maintained a physical exercise program t o  prevent performance and 
physical de te r iora t ion  due t o  reduced physical a c t i v i t y  during the confined 
periods. Some of the  physical e f f e c t s  t ha t  have been noticed i n  previous con- 
finement s tudies  ( r e f .  6) are l o s s  of l e g  strength,  f a i l u r e  o r  impairment of 
bowel action, l o s s  of appet i te ,  increase i n  tension, pain i n  lower back, pain 
i n  upper back from pos i t iona l  fa t igue,  and cerv ica l  pain. 

The physical exercise program w a s  designed by a professional physical 
therap is t  t o  combat these symptons. The program consisted of two par t s :  pre- 
conditioning and t h e  in- f l igh t  program. The preconditioning program s ta r ted  
6 weeks before the  f i rs t  flight and consisted of swimming, tumbling, running, 
weight l i f t i n g ,  and cal is thenics;  by the  time of t he  f i r s t  f l i g h t ,  the  p i l o t s  
were considered t o  be i n  excellent condition. The onboard program w a s  carried 
out by means of a bungee-type device which, with sui table  r e s t r a in t ,  would 
appear t o  be p rac t i ca l  under zero "g." The device i s  shown i n  f igure 11. There 
were 11 exercises,  8 with the  bungee device. 
described i n  appendix A. 

The ac tua l  exercises used are  

Psychophysiological Tasks 

The crew were given thorough medical, psychological, and psychiatr ic  
examinations 6 weeks before the f i rs t  f l i g h t  and immediately a f t e r  the  f i r s t  
and t h i r d  f l i gh t s .  
t o  measure physical endurance. 

T h i s  examination included the  Harvard s tep  tes t  (appendix B) 
A b r i e f  medical exam w a s  given a f t e r  f l i g h t  11. 

I n  addition t o  t h e i r  normal mission dut ies ,  t h e  crew were given several  
other du t ies  which were used t o  determine t h e i r  psychological and physiological 
reaction t o  the  f l ights.  These tasks  could possibly measure e f f ec t s  not 
obtainable by using the  more complex tasks  of normal mission dut ies ,  and they 
would be comparable with data  from biomedical studies.  
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The crew were given two behavioral response tasks  t o  provide a n  indication 
of s t ress ,  i f  it existed.  The tasks were designed t o  t e s t  reaction time and 
t i m e  e s t i m a t  ion. 

The crew were given the  t a sk  of col lect ing t h e i r  own urine samples and of 
measuring t h e i r  own blood pressure.  The urine samples were analyzed by lab- 
oratory technic-ians t o  determine the  excretion l e v e l  of 17 hydroxycorticoster- 
oids,  as an indicat ion of s t r e s s .  It represents t he  breakdown of adrenal prod- 
uc t s  t h a t  are introduced in to  the blood during times of physiological and 
psychological s t r e s s .  These a re  a l s o  used t o  determine the  degree of adaptation 
of t h e  crew t o  the  duty cycle. The blood-pressure measurements were made every 
8 hours during the  f l i g h t s  by the  crew themselves t o  determine the  sys to l ic  
pressure. An elevated sys to l i c  pressure i s  known t o  occur during intense 
excitement and anxiety. On the  other  hand, the  lack of body movement within 
the  simulator might depress t h e  blood pressure. 

CREW SELECTION 

A s  mentioned i n  the introduction, i n  some of the  confinement s tudies  i n  
which physiological or  psychological problems have been encountered, there  were 
few or  no c r i t e r i a  f o r  personnel select ion.  Consequently, some of the  subjects 
were i n  poor physical  condition and had no r e a l  motivation f o r  good t a s k  per- 
formance. T h i s  s i tua t ion  i s  i n  contrast  t o  what i s  expected of a t ra ined astro-  
naut crew. Results obtained with these untrained subjects have, i n  some cases, 
been qui te  unexpected i n  t h a t  t h e  subjects had hal lucinat ions,  muscular pains,  
and other  e f f ec t s .  The publ ic i ty  awarded these r e s u l t s  has cast  cer ta in  doubts 
on man's a b i l i t y  t o  perform well  i n  confined areas  over prolonged periods. 

I n  order t o  approach t h i s  problem area more r e a l i s t i c a l l y ,  t h e  four crew 
members par t ic ipa t ing  i n  the NASA-Martin experiment w e r e  a l l  NASA research 
p i l o t s .  These p i l o t s  were mature, experienced, and well-motivated, t h e i r  
average age w a s  34- years and t h e i r  average f l i g h t  time was about 4,000 hours; 

each had flown at l e a s t  40 d i f f e ren t  types of a i r c r a f t .  
comprised the  ac tua l  crew while the  four th  acted as primary capsule comunica- 
t o r .  No compatibil i ty t es t s  w e r e  used i n  crew selection. 

1 
2 

Three of the  p i l o t s  

CREW TRAINING 

The ove ra l l  p re f l igh t  t r a in ing  program began 10 weeks before the  f irst  
f l i g h t  with a 5-day or ien ta t ion  and t r a in ing  meeting which consisted of a 
se r i e s  of l ec tu re s  on the  mission concept, operation of the  equipment, and 
f l i g h t  t i m e  h is tory.  During t h i s  time, t h e  crew were given several  t ra in ing  
and f l i g h t  manuals on descr ipt ion of t he  simulated mission, crew-equipment 
operating procedures, f l i g h t  plans for the  f irst  f l i g h t ,  and malfunction proce- 
dures. After th i s  meeting, t h e  crew returned t o  t h e i r  home bases t o  study the  
manuals. A t  t he  beginning of t he  four th  week another 5-day meeting w a s  held 
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t o  review the  procedures and famil iar ize  the  crew with f l i g h t  displays and 
obtain prac t ice  on the rendezvous phase. A t  t he  end of t h i s  week the  crew 
again returned t o  t h e i r  home bases u n t i l  3 weeks before the  f i r s t  f l i g h t .  
During t h e  in t e rva l s  between meetings, several  1-day t r i p s  w e r e  made by the  
crew f o r  pract ice .  

During the  3 weeks before the f i r s t  f l i g h t ,  t he  crew were given pract ice  
on a l l  tasks ,  and base-line data were recorded. The tasks  tha t  required the  
most t r a in ing  were t h e  f l igh t -cont ro l  tasks .  Table I shows the  number of 
f l ight-control  runs completed by each crew member. 

During t h e  t r a in ing  period, t he  crew developed an in- f l igh t  check l i s t  f o r  
t h e i r  own use during the f l i g h t s .  This l i s t  contained the  sequential  operating 
s teps  of a l l  the phases and w a s  used extensively by the  crew during the  f l i g h t s .  

RESULTS AND DISCUSSION 

The results of t h i s  invest igat ion are based on a comparison between f l i g h t  
and base-line data t o  determine whether t he  crew displayed any deter iorat ion 
i n  performance of mission tasks .  The comparison w a s  extended t o  include the  
e f f e c t s  of duty cycle and physical conditioning and t o  determine whether the  
crew underwent any psychophysiological s t r e s s .  

Operating Conditions 

Generally, t he  f l ight r e s u l t s  indicated no degradation i n  p i l o t  perform- 
ance resu l t ing  from t h e  s t r e s s fu l  conditions of t he  missions; however, there  
were some few instances i n  which a p i l o t ' s  performance during a f l i g h t  w a s  not 
qui te  as good as h i s  pref l igh t  performance. This could be a t t r ibu ted  t o  the 
f a c t  t h a t  p ref l igh t  tasks  were made up of separate mission phases, whereas the  
flights covered the  t o t a l  mission, and time d id  not permit intensive p i l o t  
t ra in ing  f o r  the combined phases as a n  integrated mission. This pertains  par- 
t i c u l a r l y  t o  the  de ta i led  mission and task  procedures. It w a s  f e l t  t h a t  a more 
intensive t r a in ing  program, as cer ta in ly  would apply t o  an ac tua l  mission, 
would r e c t i f y  t h i s  problem. I n  addition, the  p i l o t s  had t o  use r e l a t ive ly  poor 
instrument displays and hand control lers  which a l s o  could not be optimized 
because of the  lack  of time. A s  a result of t he  display and control ler  l i m i t a -  
t ions ,  the  a b i l i t y  of the  p i l o t s  t o  obtain cer ta in  f l i g h t  conditions w a s  deter-  
mined more by these l imi ta t ions  than by p i l o t  capabi l i ty .  Thus, the data pre- 
sented do not represent optimum values but do provide the  desired comparison 
between pref l igh t  and f l ight  data.  

Fl ight  Control 

The crew's performance during each of the f l ight-control  phases w a s  eval- 
uated by means of the var iables  given i n  tab le  11. 
from translunar  inser t ion  through lunar deorbit ,  as w e l l  as the return phases 

The ear ly  mission phases 
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of lunar launch, t ransear th  inser t ion,  and midcourse correction, a l l  used 
a s  the evaluation variable.  Since each of these phases occurred i n  ascending 
order throughout the mission, a progressive increase i n  AVe would be expected 
i f  a degradation i n  p i l o t  performance were present. However, no such trend w a s  
noted. 
f l i g h t  time than had been obtained a f t e r  3 hours. Table 111 shows the average 
values of base-line and f l i g h t  AVe f o r  the phases discussed. 

AVe 

I n  f ac t ,  i n  some cases better r e s u l t s  were produced a f t e r  3 days of 

The braking phase of the  lunar landing w a s  the  most d i f f i c u l t  single phase 
of the mission and required the  greatest  amount of p i l o t  t ra ining.  The f i r s t  
attempt t o  simulate this phase u t i l i z e d  a CRT display that did not include a 
veloci ty-al t i tude curve. It w a s  found t h a t  successful landings could not be 
consis tent ly  obtained; therefore,  the display of f igure 6 (c )  w a s  incorporated 
as the f i n a l  display. Although ?e w a s  presented on the f i n a l  display, it was 
not used by the crew members because it was incompatible. Thus, landing at a 
preselected point was not considered as part of the task. "he touchdown condi- 
t i ons  tabulated i n  t ab le  IV show, i n  general, that the f l i g h t  r e su l t s  were as 
good as, or  b e t t e r  than, t he  pref l igh t  resu l t s .  These data a l so  show t h a t  
b e t t e r  touchdown conditions were obtained with the main vehicle than with the  
LOR vehicle. Since both vehicles used the same thrust-weight r a t i o  and the 
crew members preferred the a t t i t u d e  response of the LOR vehicle, the  difference 
i n  r e su l t s  must have been due mainly t o  the poor scan pa t te rn  and instrument 
readout capabili ty,  as w e l l  as acceleration control, of the  LOR vehicle. 
P i l o t  C had more d i f f i c u l t y  with the LOR landings than p i l o t s  A and B because 
he had less experience a t  the  task  since he was not present during the first 
attempt t o  shulate the  lunar landing and he was l e s s  familiar with the  man- 
ner i n  which the  f l i g h t  var iables  w e r e  displayed. Although the f l i g h t  r e su l t s  
of p i l o t  C appear unsatisfactory, they w e r e  within h i s  pref l igh t  averages. In  
the  d i r ec t  landings, however, a l l  p i l o t s  did equally well. An analog recording 
of the  f l i g h t  I11 d i rec t  landing f o r  p i l o t  C i s  shown i n  f igure 12. 

Four of the f l i g h t  lunar landings were surprise aborts  imposed i n  the form 
of simulated system fa i lures .  
and one excursion landing during f l i g h t  1 and one main landing i n  each of 
f l i g h t s  I1 and 111. 
less than 1,500 f t / s e c  and were a l l  completed successfully. 
the aborted run of f l i g h t  111, which w a s  representative. 

The par t icu lar  landings aborted were one main 

They all occurred below 4,000-foot a l t i t ude  with a velocity 
Figure 13 shows 

The r e s u l t s  of t he  base-line and flight runs f o r  rendezvous a r e  shown i n  
tab le  V. The range value i n  the  t ab le  represents the r e l a t ive  displacement of 
t he  two vehicles i n  the horizontal  plane as the  excursion vehicle reached the 
a l t i t ude  of the  orb i t ing  spacecraft. The data  show t h a t  i n  general t he  f l i g h t  
averages were as good or b e t t e r  than the pref l igh t  averages. 
averages of t o t a l  t i m e  by p i l o t s  A and C were accompanied by much lower t o t a l  
impulse flight averages. This i s  not considered p i l o t  performance degradation 
but ra ther  i s  consistent with previous rendezvous study results wherein f u e l  
use and t h e  were inversely proportional. 
this trend; however, i f  the  pref l igh t  I and flight I da ta  are neglected assuming 
p i l o t  B had not optimized his method, then the  pref l igh t  t o t a l  impulse average 
would become 113,326 lb/sec and the  average t o t a l  time would become 12.5 minutes. 
The fl ight averages become 112,014 lb/sec f o r  t o t a l  impulse and 13.6 minutes 

The higher flight 

P i l o t  B did not appear t o  follow 



f o r  t o t a l  time; w i t h  this assumption p i l o t  B a l so  followed the  trend o f  p i l o t s  A 
and C. Figure 14 shows a three-dimensional p lo t  of flight I11 rendezvous f o r  
p i l o t  c. 

The reentry maneuver w a s  evaluated on t h e  basis of the integrated a t t i t u d e  
e r ro r  and the  integrated a l t i t u d e  e r ro r  weighted w i t h  veloci ty  throughout the 
e n t i r e  flight and a l so  & at the  beginning of the first skip out. Table V I  
shows the results of several  data  runs and the r e s u l t s  of f l i g h t  111. These 
r e s u l t s  show some higher f l ight  in t eg ra l  values than pref l igh t  values which 
might seem t o  indicate  poor performance; however, this was not considered 
degradation i n  performance but ra ther  the  normal var ia t ion i n  p i l o t  performance. 
Further indicat ive that no degradation w a s  experienced are  the low values of 
Ge 
the  short t i m e  spent i n  t h i s  portion of the  simulation. 

which a re  as good as could be expected, considering the  instrumentation and 

Other Mission Tasks 

The flight navigattonal data were not usable because the star projector 
did not a l ine  the star s l ides  consistently,  thus causing d i f fe ren t  readings 
from run t o  run. 

The systems monitoring and management tasks required approximately 30 per- 
cent of a crew member's t o t a l  time i n  the simulator and t h i s  amounted t o  about 
two-thirds of h i s  ac tua l  time on duty. 
probably the  t a sk  t h a t  i s  most sensi t ive t o  sensory deprivation o r  confinement 
and any performance degradation would be more apt t o  develop while performing 
th i s  task; however, performance degradation w a s  not noted. 

This type of extended monitoring i s  

The crew's performance of operation procedures has already been mentioned 
t o  some extent concerning momentary forgetfulness; however, i n  general the per- 
formance w a s  extremely good. With the  exception of some of the  f l ight-control  
procedures, only minor e r ro r s  were made i n  mission procedures - such as, the 
use of t he  incorrect mode of the i n e r t i a l  platform, f a i lu re  t o  switch from 
ear th  reference t o  moon reference a t  the proper t i m e ,  and f a i l u r e  t o  l eve l  the 
main vehicle a f t e r  lunar  touchdown. A s  with the f l ight-control  tasks,  it w a s  
decided that more t r a in ing  would eliminate these minor errors .  

A t  ce r ta in  times during the flights, checks were made t o  determine the  
systems s ta tus .  System checks were made before and after each f l i g h t  control 
phase t o  determine the operational capabi l i ty  of the vehicle, and log checks 
and en t r i e s  were made every 4 hours during the  coasting periods. The log 
checks were extensive and prac t ica l ly  every meter reading and switch posit ion 
was wri t ten down a t  t h i s  time. These checks were also monitored a t  the  control 
room consoles and recorded. No mistakes were made but one o r  two readings were 
omitted. 

A t  random times during the flights, several  malfunctions were introduced. 
Some could be corrected by merely adjusting a meter, whereas others required 
t h e  use of a troubleshooting log ic  f o r  correction. The p i l o t s  always recognized 
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t h e  par t icu lar  malfunction quickly and performed the  proper correction regard- 
less of t he  corrective procedure required. 

Duty Cycles 

The r e su l t s  of f l i g h t  I showed no d i r ec t  e f f ec t  upon crew performance due 
t o  the duty cycle. I n  reference 7, members of the  crew stated t h a t  t he  las t  
few duty hours of t h e  16-hour waking period were very t i r i n g .  Eye fat igue w a s  
noticeable, and general  boredom s a t  i n  from long hours of panel monitoring. 
Because of eye fat igue and boredom, the  crew found it d i f f i c u l t  t o  focus the i r  
eyes on one spot and very easy t o  stare a t  t he  panel - looking but not r e a l l y  
seeing. I n  addition, they found it d i f f i c u l t  t o  sleep the  f u l l  8-hour sleep 
period. 
spent catnapping or  t ry ing  t o  sleep. After 2 days under these conditions the  
p i l o t s  became very t i r e d  and t h i s  w a s  noticed by t h e  examiners a f t e r  f l i g h t  I. 
Several f ac to r s  were suspected of contributing t o  t h e  sleeping problem: noises 
associated with the  simulation such as communications (ground-to-crew and crew- 
to-crew), warning horns, air-conditioning compressor, movement of crew members 
about t he  simulator; var ia t ion  i n  temperature; and uncomfortable and r e s t r i c t ed  
sleeping area. A s  t o  the  s t ruc ture  of the  duty cycle, t h e  crew f e l t  t ha t  long 
sustained duty periods i n  excess of 4 hours made the  monitoring t a s k  d i f f i c u l t .  
A l s o ,  they f e l t  t h a t  t h e  1-hour off-duty period a f t e r  a s leep period i s  def i -  
n i t e l y  required. 

The average uninterrupted sleep w a s  4 hours, with the  remaining 4 hours 

The 26-hour cycle used i n  f l i g h t  11, featur ing &-hour sleep periods sepa- 
ra ted by 9-hour waking periods, w a s  found t o  be much more desirable.  A s  a 
r e su l t ,  t he  26-hour cycle w a s  used f o r  f l i g h t  111, and at the  end of  both 
f l i g h t s  I1 and 111 the examiners found t h a t  the  crew showed no evidence o f  
fa t igue o r  i r r i t a b i l i t y  as they had at the  end of f l i g h t  I. Again there  w a s  no 
d i r ec t  e f f ec t  of duty cycle upon crew performance; however, since the members 
of the  crew were more rested,  t h i s  cycle aided them i n  maintaining t h e i r  per- 
formance during the  monitoring periods. Another point of i n t e r e s t  i s  tha t  t he  
p i l o t s  had not been given a chance t o  adapt t o  the duty cycles p r i o r  t o  the 
f l i g h t s  and they apparently did not adapt during the  f l i g h t s  a s  indicated by 
the consistent pat tern i n  var ia t ion  of s te ro id  leve ls ,  but t h i s  did not seem t o  
have any e f f ec t  on t h e i r  performance. 

Thus, it would appear t h a t  off-duty periods are highly desirable  a f t e r  
s leep periods. Two-hour duty periods help t o  maintain high monitoring pro- 
f ic iency.  S t r i c t  adherence t o  a pa r t i cu la r  cycle i s  not necessary and a l low-  
ances can be made f o r  mission tests.  Finally,  preadaptation t o  a pa r t i cu la r  
cycle does not appear t o  be required. 

To combat t h e  boredom of t h e  long monitoring periods, background music w a s  
available.  No detrimental  e f f e c t s  of monitoring capabi l i ty  was noticed; i n  
f a c t ,  the  crew members believed the  music aided a great  deal  i n  combating bore- 
dom and thus f e l t  they were more alert  at t h e  panel. I n  an ac tua l  space mission 
the  boredom of the  simulation would most probably be replaced by a higher degree 
of motivation and possibly anxiety. Nonetheless, the crew f e l t  t h a t  background 
music would a l so  be an asset i n  an ac tua l  mission for off-duty periods and long 
coasting periods.  



I I 

Physical Conditioning 

Table VZI gives the  physical conditioning evaluation of the crew p r io r  t o  
and after f l i g h t  11. These resu l t s ,  i n  agreement with data recorded on flight I 
(not shown), show no detectable decrement i n  physical conditioning a f t e r  f l i g h t s  
of 9 days. 

Step T e s t  and t a b l e  VI11 shows that there  w a s  no deter iorat ion a f t e r  7 days of 
confinement. 

The physical evaluation f o r  f l ight I11 w a s  based on the  Harvard 
2 

The exercise schedule f o r  f l i g h t  I consisted of four l5-minute exercise 
periods per day. The crew decided shorter more frequent exercise periods were 
preferable; thus the  flight I1 exercise schedule called fo r  5 minutes of exer- 
c i se  every off-duty period. However, during the f l i g h t  the schedule was revised 
a t  the  request of the  crew t o  ?-minute exercise periods every other off-duty 
period. In flight 111, 8-minute exercise periods were scheduled fo r  every other 
off-duty periods. 

The program w a s  designed t o  develop and maintain endurance rather  than 
strength i n  order t o  combat the physical ailments associated with confinement. 
The program succeeded i n  this a i m ,  and it should be pointed out that a l e s s  
physically f i t  crew may have developed back and neck pain, and these might have 
affected t h e i r  performance. Thus, the  physical exercise program i s  believed t o  
help prevent performance deter iorat ion,  and the extent of exercise needed t o  
maintain good condition once it has been obtained i s  defined by the  f i n a l  sched- 
ule t h a t  was used. 
gram w a s  worthwhile. 

The crew themselves thought that the  physical exercise pro- 

Psychophysiological Tasks 

The results of the  reaction time and time estimation t e s t s  showed no change 
i n  p i l o t  performance during t h e  flights. The X2 t e s t  w a s  applied t o  a l l  the 
data, but no s ignif icant  s t a t i s t i c a l  trends could be obtained. 

A cort icosteroid analysis revealed t h a t  t he  p i l o t s  maintained t h e i r  normal 
diurnal  var ia t ion i n  the  concentration of 17 hydroxycorticosteroids i n  urine 
samples through f l i g h t s  I and 11. The flight I1 data are shown i n  f igure 15 
and the  lack of interrupt ion of the  natural  duty cycle i s  surprising even 
though a 26-hour duty cycle w a s  used. 
indicated a lack of stress due t o  the  confined conditions. 

No elevation of the s teroids  l eve l s  

Blood-pressure measurements revealed t h a t  generally there w a s  a lack of 
unusual excitement o r  anxiety throughout the  flights. 
high reading f o r  p i l o t  B t h a t  occurred a t  the  1.63~1 hour of f l i g h t  I11 as shown 
i n  t ab le  IX, wbich gives blood-pressure measurements taken during f l i g h t  I11 
along with mission t i m e .  
j u s t  p r ior  t o  his commanding the f i r s t  reentry maneuver. 

One exception i s  the 

The high reading w a s  a t t r ibu ted  t o  general excitement 

There were two calor ie  leve ls  used during t h i s  investigation, an 1,800- 
ca lor ie  d i e t  f o r  f l i g h t s  I and I1 and a 1 , m - c a l o r i e  d i e t  fo r  flight 111. 
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Prepared meals were supplied da i ly  without disrupting t h e  confinement. 
were stored i n  a re f r igera tor ,  then warmed at  mealtime. 

1 
2 

They 

Body weight l o s ses  averaged 1- pounds per man during flights I and 11, 

This loss  i n  whereas t h e  lo s s  averaged 8 pounds per man during flight 111. 
weight may have been p a r t l y  due t o  dehydration, and the  1,500-calorie d i e t  may 
have been a l i t t l e  too s t r ingent .  

JXnally, t he  medical and psychological evaluation revealed that the crew 
experienced no medical changes other  than the  loss  of weight and no changes i n  
personal i ty  due t o  the confinement. 

CONCLUDING REMARKS 

The confinement, r e s t r i c t e d  sensory environment, and long mission duration 
did not adversely a f f e c t  ove ra l l  p i lo t ing  performance. However, there  were some 
f e w  instances wherein a spec i f ic  t a sk  w a s  not performed qui te  as wel l  during the  
integrated mission p r o f i l e  as it had been performed as a separate t a sk  during 
pref l igh t .  These few instances mainly involved procedural e r ro r s .  Time did not 
permit t he  intense t r a in ing  of combined mission phases that would have r e c t i f i e d  
t h i s  problem. Also, time d id  not permit optimization of instrument displays and 
cont ro l le rs  which would have decreased the  heavy workload imposed on the  p i l o t s  
by cer ta in  mission phases. Thus, t o  insure maximum performance during this type 
of mission, it would be necessary t o  include use of optimized instrument dis-  
plays and hand cont ro l le rs ,  as w e l l  as intensive i n i t i a l  t r a in ing  i n  f l i g h t  con- 
t r o l  and procedures as separate t a sks  and as an integrated mission p ro f i l e .  

The a l e r tnes s  of t he  crew remained high throughout the  mission, and when 
faced with a system malfunction o r  emergency, they always responded quickly and 
returned t h e  system t o  normal operation. 

A 26-hour duty cycle with two &-hour s leep periods w a s  found more agree- 
able t o  t h e  c r e w  and more adaptable t o  the demands of t he  t r a j ec to ry  than t h e  
24-hour cycle with one 8-hour s leep period. 

There w a s  no degradation i n  physical f i t n e s s  of the crew during the 
f l i gh t s .  
t o  t he  start of the  flights and the  onboard exercise program conducted during 
the  f l i g h t s .  The onboard exercise  program required a t o t a l  of 30 minutes per  
day. 

This w a s  pr imari ly  due t o  the physical conditioning of t he  crew p r i o r  

The results of numerous d i f f e ren t  psychophysiological t e s t s  on the  crew 
indicated no abnormal s t r e s s  react ion due t o  the prolonged confinement of the  
m i  s sion . 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va., February 17, 1964. 



APPENDIX A 

EXERCISE PROGRAM 

Pref l igh t  Exercises 

The exercises described i n  t h i s  section were used t o  condition the  crew 
before the  f l i g h t .  

Jumping -- jack.- The jumping jack w a s  used as a general warm-up exercise.  
The subject stood e rec t  and jumped, simultaneously spreading the l e g s  and 
ra i s ing  the  hands through an a rc  overhead, then jumped again t o  re turn t o  the  
s t a r t i ng  posit ion.  This exercise w a s  repeated 100 times. 

Rope jumping.- Rope jumping w a s  used f o r  a general warm-up exercise,  l e g  
exercise, and respiratory conditioning. The usual form w a s  used f o r  the fo l -  
lowing four var ia t ions:  jumping with both f e e t ,  one foot ,  the other foot ,  and 
stepping. Each var ia t ion  w a s  done f o r  15 seconds with a rest period between 
each. 

Tiger s t re tch.-  The t i g e r  s t r e t ch  w a s  used t o  strengthen back and abdom- 
i n a l  muscles t o  a id  i n  prevention of back pain and f au l ty  elimination. The 
subjects began on hands and knees and moved arms forward keeping knees i n  place 
and hollowing the  back, then moved arms towards the  knees arching the  back. It 
w a s  repeated 5 times i n i t i a l l y  and increased t o  10 times. 

Front and back ---___ bridges.- Front and back bridges were used t o  strengthen 
neck muscles, a s  an a id  i n  prevention of cerv ica l  pain. The f ron t  bridge w a s  
s ta r ted  on the  hands, knees, and forehead. The knees were raised and the  body 
weight w a s  supported on head and f e e t  ( the  hands were used i n i t i a l l y ) .  
bridges were performed on the  back and t h e  body weight w a s  supported on the 
back of t h e  neck and legs .  I n i t i a l l y  each one w a s  repeated 2 times, then 
increased t o  5 times. 

Back 

Front rolls.- Front r o l l s  were used t o  s t r e t c h  back muscles and a id  i n  
prevention of upper and lower back pain. The f ron t  r o l l  began by squatting 
with hands on the m a t ,  chin t o  chest ,  and supporting body weight on the back of 

. the  neck. A t  t h e  start  of r o l l  t he  subject grabed h i s  ankles and kept i n  a 
b a l l  as much as possible.  
increased t o  12 t i m e s .  

This w a s  repeated 5 times i n i t i a l l y  and then 

Push-ups, l e g  -.-_ l i f t s ,  ChLnc-ups, sit-ups.- Push-ups, l eg  l i f t s ,  chin-ups, 
and sit-ups were used f o r  general conditioning of arms, legs ,  and abdominal 
muscles. 
repe t i t ions  were determined by each individual. 

These exercises  were performed with t h e  usually accepted form and the  

Swing b e l l  ex.ercise.- The swing b e l l  exercise w a s  used t o  strengthen the  
muscles which ac t  t o  balance the  body as a means of counteracting pos i t iona l  
fa t igue.  The exercise u t i l i z e d  a l5-pound bar  b e l l  with t h e  weight held between 
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t h e  hands instead of outside as i s  done normally. All swing b e l l  exercises were 
performed i n  the same posi t ion with the  subject on h i s  toes  and with the  f e e t  
spread a l i t t l e  less than shoulder width. The knees and hips  were flexed t o  
put t he  body i n  a s t a r t i ng  posi t ion of precarious balance so tha t  the  subject 
had t o  struggle t o  maintain an upright posit ion.  The f i r s t  exercise from t h i s  
posi t ion consisted of swinging the  weight from the thigh posi t ion overhead t o  
the  back of t he  neck and then returned t o  the  thigh posit ion.  This strengthened 
the  muscles of anter ior-poster ior  balance. I n  the  second exercise, the subject 
swung the  weight i n  a c i r cu la r  motion overhead, keeping the arms r e l a t ive ly  
s t ra ight .  Then the  c i r cu la r  motion w a s  reversed. T h i s  w a s  t o  strengthen mus- 
c l e s  of balance i n  all direct ions.  I n  the  t h i r d  exercise,  the subject described 
a c i r c l e  i n  f ront  of t h e  body and then reversed the  c i r c l e .  The purpose of t h i s  
exercise w a s  t o  strengthen the muscles of l a t e r a l  balance. Each exercise w a s  
repeated 10 t o  12 t i m e s .  

Pelvic tilt.- The pelvic  tilt w a s  used t o  strengthen muscles of t he  back 
and t o  counteract back pain resu l t ing  from fat igue.  The subject stood with t h e  
heels,  buttocks, shoulders, and head against  the  w a l l .  The f ron t  of t h e  pe lv is  
w a s  t i l t e d  u n t i l  the  s m a l l  of the  back w a s  also against  t he  w a l l .  I n i t i a l l y  
t h e  exercise w a s  repeated 3 times and then w a s  increased t o  10 times. 

', . Barbell  exercise.- The ba rbe l l  w a s  used t o  develop body strength. The 
f i r s t - e x e r c i s e  w a s  a modified clean. 
bent, then the  ba rbe l l  w a s  l i f t e d  t o  the  thigh r e s t  posi t ion,  t o  the  chest 
posi t ion,  and pressed overhead. 
back, and arms. Two sets of 12  r epe t i t i ons  each were used. The second exer- 
c i se  w a s  performed by pressing the  w e i g h t  overhead, then lowering and ra i s ing  
t h e  weight behind the  neck. I t s  purpose w a s  t o  strengthen the  t r i caps .  Even- 
tua l ly ,  two sets of 12  r epe t i t i ons  each were used. The t h i r d  exercise w a s  the  
bench press. It w a s  performed while lying on the back on a low bench holding 
the  ba rbe l l  against  the  chest with both hands. The ba rbe l l  w a s  pressed upward 
and then lowered and repeated a t  l e a s t  10 times. The purpose of this  exercise 
w a s  t o  strengthen the  muscles of the  chest. The four th  exercise w a s  the  f ront  
cur l .  
then, from the  th igh  r e s t  posi t ion,  t he  barbe l l  i s  brought up the  chest. The 
f i f t h  exercise w a s  a back c u r l  and w a s  performed s i m i l a r  t o  t he  f ront  c u r l  but 
with t h e  ba rbe l l  b a r  being held with knuckles downward; t h i s  w a s  repeated 
10 t i m e s .  
individual. 

It w a s  s t a r t ed  with the  knees s l igh t ly  

I t s  purpose i s  t o  develop muscles of t he  legs ,  

This exercise w a s  performed by grasping the  ba rbe l l  with knuckles up; 

The weight u t i l i z e d  f o r  each exercise w a s  determined by the  

Running.- Running w a s  used for respiratory and normal physical  condi- 
t ioning. 
1 m i l e  i n  7 minutes or under. 

A normal running s t y l e  w a s  used with distance varying from 1/2  t o  

In-Flight Exercise s 

The exercises described i n  t h i s  section were used t o  maintain t h e  crew's 
physical  condition during t h e  f l i g h t .  

I Sitt_llffg.- The following exercises  were done i n  a s i t t i n g  posit ion.  



Leg push: For the  l e g  push, the  exerciser  w a s  held by both hands and the  
r igh t  foot  w a s  pushed against  the  middle of the  exerciser .  Next, the l e f t  foot  
and then both f e e t  were pushed against  the  middle of t h e  exerciser .  Each action 
w a s  repeated about 5 t i m e s .  

Arm abduction: For t h e  f i r s t  arm abduction exercise,  the  exerciser  w a s  
held by both hands and s t re tched i n  f ront  of the  chest about 5 times. For the  
second one, the exerciser  w a s  held by both hands and w a s  stretched behind the 
neck with the  head erec t .  T h i s  exercise w a s  a l so  repeated about 5 times. 

Shoulder exercise:  For the  shoulder exercise,  the  exerciser  w a s  held by 
both hands and s t re tched behind the  shoulders about 5 times. 

Leg abduction: For the  l e g  abduction exercises,  the  exerciser  w a s  held i n  
the l e f t  hand and on the r igh t  foot ,  then the  r igh t  foot  w a s  swung t o  the r igh t  
and then t o  the l e f t ;  t h i s  w a s  repeated about 5 t i m e s .  Next, t he  exerciser  was 
held i n  t h e  r igh t  hand and on the  r igh t  foot ,  then the  right foot  w a s  swung 
toward the  midline of the  body, res is tance being offered with the  r igh t  hand. 
The exercise w a s  then performed with the l e f t  hand and l e f t  foot .  T h i s  exercise 
w a s  repeated with each hand and foot  about 5 times. 

Standin-g.- The following exercises  were done i n  a standing posit ion.  . " 

Pelvic tilt: The pe lv ic  tilt w a s  performed i n  the  same manner as tha t  
described i n  the  section "Preflight Exercises." 

Side bending: For side bending, the  exerciser  w a s  placed on the  l e f t  f o o t  
Then the  sequence w a s  and i n  t h e  r igh t  hand and the subject bent t o  t h e  r igh t .  

changed t o  the r igh t  foot  and l e f t  hand. The subject repeated the  exercise 
about 5 times. 

Back extension: For the  back extension exercise,  t h e  exerciser  w a s  held 
i n  both hands and the subject stood on the  middle of the  exerciser  with both 
f ee t .  Without bending his knees, he flexed from the  hips  and then straightened 
the  h ips  and back. This procedure w a s  repeated about 5 times. 

Quarter knee bends: For quarter knee bends, t he  exerciser  w a s  held i n  
both hands and the  subject stood i n  the middle of t he  exerciser  with both f e e t .  
Both knees were bent one-quarter and then straightened about 5 times. 

Abdominal exercise:  For abdominal exercise, t he  subject drew i n  the  
abdominal muscles and held f o r  6 seconds; th is  w a s  repeated 5 times. 
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APPENDIX B 

HARVARD STEP TEST PROTOCOL 

This appendix describes the  procedure used i n  the  Harvard s tep tes t .  

Equipment.- The following equipment w a s  used f o r  t he  t e s t :  

1 
2 

Platform approximately 19- inches high, of the nonskid type, and 

a top  area of 2 square f e e t  
Metronome capable of 1 beat per second 
Stop watch with sweep second hand 
Hand counter t o  record number of steps climbed 

Techniques.- The techniques used i n  performing t h i s  t e s t  were as follows. 
The subject w a s  dressed i n  underwear, socks, and tennis  shoes. The subject 
stepped upon the  platform during the  1s t  second, stepped down during the  
2d second, stepped up during the  3d second, and continued i n  t h i s  manner f o r  
5 minutes. The subject w a s  advised t o  crouch forward as low as he chose when 
stepping up, thus  negating the  necessi ty  of coming t o  a f u l l  upright posi t ion 
on the  step.  The subject w a s  fu r ther  advised tha t  i f  he w a s  unable t o  keep up 
with the  metronome, he w a s  t o  continue as near as possible t o  a metronome pace. 
If t h e  subject stumbled o r  f e l l ,  he w a s  encouraged t o  continue the t e s t  i f  he 
w a s  uninjured. After these instruct ions,  the metronome w a s  s t a r t ed  and as soon 
as t h e  subject began h i s  f i rs t  step,  t h e  stop watch w a s  s ta r ted .  During the  
tes t  no encouragement o r  other d i rec t ions  were given. A t  t h e  end of 5 minutes 
the  subject immediately sat down. The physician then recorded the  pulse during 
three  t i m e  periods ( the end of the  tes t  being considered t i m e  zero):  from 1 t o  
t o  1- minutes, from 2 t o  2- minutes, and from 4 t o  ,,1 minutes. All  pulses were 

recorded by precordial  auscultation; t he  recording of t h e  pulses  ended the  
t e s t s .  

1 1 
2 2 2 

Scoring.- For scoring purposes, it w a s  assumed t h a t  a high post-exercise 
pulse re f lec ted  poor physical  f i t n e s s  and a low number of step-ups re f lec ted  
poor subject par t ic ipa t ion .  The t o t a l  step-up value S w a s  divided by the  
t o t a l  pulse value P multiplied by 150 t o  give the f i n a l  Harvard step tes t  
score as shown by t h e  following equation: 

S 
P 

Score = - X 150 

A l l  subjects  should be able  t o  perform f o r  5 minutes. The average s tep  
score should be 52.8. An acceptable range i s  from 45 t o  100. 

21 

I. I 



D F 

1. Markson, E., Bryant, J., and Bergsten, F.: Simulation o f  Manned Lunar 
Landing. [preprint] 2482-62, American Rocket Soc., Ju ly  1962. 

2. Bryant, J. P., and Frank, M. P.: Supercircular Re-Entry Guidance f o r  a 
Fixed L/D Vehicle Ehnploying a Skip f o r  Extreme Ranges. 
American Rocket Soc., Ju ly  1962. 

[Preprint] 2489-62, 

3 .  Brissenden, Roy FI ,  Burton, Bert B., Foudriat, Edwin C., and Whitten, 
James B.: Analog Simulation o f  a Pilot-Controlled Rendezvous. NASA 
TN D-747, 1961. 

4. Queijo, M. J., Miller, G. K i m b a l l ,  Jr., and Fletcher,  Herman S.: Fixed- 
Base-Simulator Study of the  Abi l i ty  of a P i l o t  To Perform Soft Lunar 
Landings. NASA TN D-1484, 1962. 

5. Grodsky, Milton A , ,  and Bryant, John P.: C r e w  Performance During Simulated 
Lunar f i s s ions .  
Aug. 1962. 

ER 12693 (Contract NAS1-1861), Martin Marietta Corp., 

6. Grodsky, Milton A.: An Invest igat ion of Crew Performance During a Simulated 
Seven-Day Lunar O r b i t  Mission - Par t  I. Performance Results. RM-121, 
Martin Marietta Corp., Jan. 1963. 

7. Algranti, Joseph S., Mallick, Donald L., and Hatch, Howard G., Jr.: Crew 
Performance on a Lunar-Mission Simulation. A report  on the Research and 
Technological Problems of Manned Rotating Spacecraft. NASA TN D- lT04 ,  
1962, pp. 135-146. 

8. Mallick, Donald L., and Ream, Harold E.: C r e w  Performance and Personal 
Observations on a Lunar Mission Simulation. 
Aerospace Sci., Jan. 1963. 

Paper No. 63-18, Ins t .  

22 



TABLE I.- TOTAL NUMBER OF PREFLIGHT PRACTICE AND BASE-LINE 

FLIGRT-CONTROL RUNS (FROM REF. 5 )  

Prefl ight  I Pref l ight  I1 Pref l ight  I11 

Main 
vehicle 

Main 
vehicle 

Main 
vehicle 

LOR 
vehicle 

LOR 
vehicle 

LOR 
vehicle 

- 

C P Phase A 

5 

3 

5 

4 

23 

9 

2 

B 

7 

2 

4 

2 

7 

4 

3 

A 

15 

2 

11 

2 

B 

21 

6 

10 

3 

A 

3 

5 

4 

4 

4 

4 

2 

A 

3 

3 

5 

1 

~ 

B 

2 
- 

2 

3 

2 

3 

3 

2 

8 

C 

13 

10 

1 

2 

18 

5 

2 

C 

21 

2 

4 

6 

C 1 
J 

Launch from 
e a r t h  

T r  an slunar 
i n s e r t  ion 

Translunar 
midcourse 

Lunar o r b i t  
inser t ion 

Lunar  deorbit 

Lunar landing 
braking 

- 
5 

2 

- 

3 
- 

Lunar launch 
and o r b i t  

Rendezvous 

Transearth 
i n s e r t  ion 

Ilransearth 
midcourse 

Reentry 

Lunar abort 
- 

1 

23 



TABLE 11.- VARIABLES U S D  FOR EVALUATION OF 

CREW pERFoT(MANcE (FROM REF. 5 )  

Phase I 
Launch from ea r th  

_ _  - 

Translunar i n se r t ion  

- -  - - .- __ - - 

Translunar midcourse correct ions 

Lunar o r b i t  i n s e r t  ion 

Lunar deorbi t  

Lunar landing braking 

Lunar launch and o r b i t  
.~ ~ -.. 

Rendezvous 

Transearth in se r t ion  

__ -_ 
Transearth midcour se 

Reentry 

Variables 

n .  

n 

AVe andJ \lee2 + qe2 + ge2 d t  

- -  - 

. 

24 



TABLE 111.- PREFLIGKC BASE-LINE AND FLIGIEIl AVERAGE 

VELOCITY ERROR COMPARISONS 

Phase 

Tran slunar i n s e r t  ion 

Translunar midcourse 
correct ions 

Lunar o r b i t  inser t ion  

Lunar deorbit  

Lunar launch and o rb i t  

P i l o t  

B 

A 
B 
C 

A 
B 

A 
B 

A 
B 
C 

Pref l igh t  AVe 

5 .5  ( 2  runs) 

0.45 (2 runs) 
.24 ( 3  runs) 
.21 ( 3  runs) 

0.93 ( 4  runs) 
1 .3  ( 4  runs) 

10.6 (5 runs) 
6.2 ( 3  runs) 
1.8 ( 5  runs) 

Fl ight  AVe 

o (1 run) 

0.24 (3 runs) 
1.03 (1 run) 
.19 (1 run) 

1 . 2  (2 runs) 
.5 ( 2  runs) 

o ( 2  runs) 
o ( 2  runs) 
7 ( 2  runs) 



7 
!il 
! 

T B L E  1V. -  LUNAR LANDING TEE1MINAL CONDITIONS 

(a) P i l o t  A 

LOR landings 

P re f l igh t  I 

F l igh t  I 

Pre f l igh t  I1 

F l igh t  11 

Pre f l igh t  I11 

Fl igh t  I11 

Pre f l igh t  I 

~. 
Fl igh t  I 

Pre f l igh t  I1 

Fl igh t  I1 

P r e f l i g h t  111 

Fl igh t  I11 

3.8 
3.73 
20.87 
15-53 
19.0 
70.0 
19 * 27 
11.47 

5.w 

10.53 
7.93 
22.10 
32 * 30 
14.69 
7.4 

8.35 

40.47 
8.13 
6.73 
5.93 
3.93 
5.6 
31.06 
6.2 

5.53 

8.14 
57.27 
.6 

25.67 

1-33 

4.07 
3.73 
6.66 

4.20 

0.89 
- .32 
1.63 
-053 
.296 
.169 
.011 
.127 

-0.34 

-4.04 
1-39 
.37 
50 

- .254 
- .14 

0.064 

-0.29 
- .168 
.543 
.438 

- .044 
.On 

- .96 
.16 

0.232 

0.68 
- .93 
--13 
-.02 

0.12 

0.241 
.Ob3 
.442 

0.012 

------ 
------ 
-5.39 
-1.3 
2.14 
-4.85 
.60 

-3.02 

-1.94 

1.88 
-2.78 

5.53 
-1.92 

- 533 
-0.526 

.262 

1.05 
- -132 
.849 
-157 
.989 

* 534 

0.731 

3.87 
5.10 

2.01 
4.63 

.365 
* 327 

1.16 

-2.39 
.236 

- .248 
0 .067 

0.07 

0.28 
eo78 

1.06 
- .262 

0.837 

-155 

- .322 

49.0 
-.3 

-34.2 
3.87 
5.68 

1.0 
5.09 

10.3 

ABORT 

NONE 

-4.3 

-2.0 
* 75 
4.67 
2.16 
-7.87 
-.84 

-3.44 

Direc t  landings 

-0. n9 
.882 
-.4% 
-.35 
- .267 
- .61 

- .085 
-1-57 

0.503 

0.463 
1.61 
- .ON 
- -693 
0 

0.ow 
.Ol3 

- .183 

0.042 

-5.55 
-4.68 
-2.76 
3.22 

-6.21 
-2.76 

.628 

.bo 

-0.551 

1.04 
2.69 
279 
-9% 

0.745 

0.038 
.203 
.142 

0.24 

-1.38 
67 
18.57 
.75 

-2.28 
63.1 
588.9 
-7.2 

-2.6 

12.6 
1.67 

3.6 

2.66 

1.44 
2-93 

3.42 

29-05 
1.06 
- .182 
-2.26 
-1.49 

-14.50 
-1 * 93 

-2 33 

-2.0 

-19.05 
-22.0 

-2.2 

-1.8 

-756 

5-15 
-.38 

2.32 

-1.7 

48.0 
-57.2 
-3.08 
-1.95 
- .12 
-1.39 
-1.1 
.657 

-0.55 

1.28 

1.78 

1.13 
.398 

-1.8 
-1.21 

-0.472 

-0.234 

.533 
1.37 

-2.46 
-1.26 
2.06 
1-37 
- .824 

1.70 

-7.47 
4.83 
- .189 
1.21 

0.434 

1.52 

-1.24 
.Ob5 

0.063 

Pe r cen t 
vf 1 f u e l  

7.93 

115.6 
-7.93 
15-3 
31.9 
16.2 
8.67 

11.8 

50.13 
14.07 
11.53 
10.20 
8.0 
9.67 
37.6 
10.8 

5.93 

137.54 
95.27 
-2.33 
43.27 

2.87 

7.00 
6.67 
11.27 

7.4 
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TABLE 1V.- LUNAR LANDING TERMINAL CONDITIONS - Continued 

(b) P i l o t  B 

T r i a l  

__ 
Percent 

f u e l  
~ 

LOR landings 

-2.92 
-2 * 93 

.5 
-6.82 
2.46 
4.64 
16.7 
9.58 
7-15 
09 

4.89 
.426 

-2.22 

NONE 

-0.01 

1.78 
* 77 

-1.58 

-1.34 

Pre f l igh t  I 0 
11.67 
3.47 
7.67 

20 
3.66 
15-33 
26.3 
21.46 
5.8 
17.4 

7.8 

2.4 

7-13 

-176.2 
7.6 
8.0 

7-06 

8.47 
6.13 
5.73 

6.53 

4.6 
7.6 
4.53 

5.93 
5.93 
4.80 

-0.65 

-.30 

-.24 
-.24 

- .82 
.13 
.24 
.146 
.387 
.287 

- .129 
-2.38 

0.02 

0.46 

0.276 
.091 

- .08 

0.40 

0.048 

.019 
- .234 

-0.25 

0.340 
-.e4 
-.077 

-0.038 

.287 
035 

0.68 
-1.64 

2.28 
1.94 

4.18 
7.29 
1.75 
-2.03 
-12.55 
68.54 
-2.29 
60.0 

2.36 

1704 
1543 

4.6 
9.8 
2.47 
42.6 
7.3 
23.3 
60.9 
36.73 
9.93 
21.00 

3.6 
-.92 
2.08 

.56 
-1.68 
-3.31 
-.75 
-1.22 
-3.65 
-3.37 

-1.5 

-1.71. 

-e697 

___ 

-2.02 

4.10 
-1.06 
-1.36 

-3.14 

-0.56 
-1. og 
5.93 

-3.55 

-0.538 
2.04 
.844 

9.93 
- 741 
- .243 

-15.07 Fl ight  I 

Pre f l igh t  I1 

Fl igh t  I1 

Pre f l igh t  111 

4.21 

22.3 
3-9 
2.61 

-1.03 

-0.58 
-1.55 
1.56 

-4.83 

5.76 
-3.5 
-1.8 

-0.112 
-1.50 
.54 

12.07 102.8 

199.3 
12.9 
13.4 

58.0 
.~ 

94.9 
89.7 
86.4 

Fl igh t  I11 91.3 

~ ~~ 

98.1 
98.1 
95.6 

Direct landings 

-1.31 
.856 

- .264 

-0.27 

-1.74 
-1.87 

-1 * 75 

0.813 
- .068 
- .615 
0.66 

- .291 -0.503 

- -015 

-0.038 
.026 
.019 

14.73 
10.53 
9.93 

11.47 

Pre f l igh t  I -3.02 
-2.86 
.668 

0.464 

-0. n 8  
.047 
.047 

ABORT 

-1.32 
.342 
32 

ABORT 

100.4 Flight I 

Pre f l igh t  I1 86.9 
104.1 
123 * 9 

7-93 
13 * 27 
8.07 

Fl igh t  11 

Pre f l igh t  I11 0.581 
* 393 

- .247 
9.93 
10.07 
8-33 

88.6 
89.4 
90.0 

Fl igh t  111 
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TABLE. IV.- LUNAR LANDING TETMINAL CONDITIONS - Concluded 

(c) Pilot c 

Percent 
vf 1 fuel T r i a l  

e,f 
e 

LOR landings 

-0.24 
-.24 
-.24 
-.24 
.529 
.11 

-1.84 

4.87 
.065 

.290 
- .283 

-467 
-1.87 

.Ob8 

-1.02 

0.081 
- -090 

- .236 
1.58 
.065 

- .024 

1.043 

-0.392 

67 
55.8 
w.4 
49.4 

64.6 
-1.3 

19.2 

8.35 

-3 17 
15.3 

-277 
2.2 
55-31 
4.2 

6.08 

3.47 
2.80 
.67 

21.13 
24.52 

3.84 
12.3 

12.05 

Preflight I 18.1 
133 3 
13.06 
9-07 

* 93 
3.4 
13.26 
16.8 
70.0 

57.47 

51-13 
14.4 

10.53 
12.4 

15 * 73 

13.86 

4.60 
19.60 

16.93 
2-33 
19: 2 
4.0 

1-5-95 

-13.7 
-6.68 
-6.0 

18.38 
2.78 

-6.52 

2.70 

-5-17 

20.93 

-53.3 

11.8 

7-70 

-5.36 
5.27 

10.03 

NONE 

NONE 

0.203 
-1.10 
.636 

- - - - - - - 
- - - - - - - 
9.3 
-5.7 

-0.762 

-3 * 13 
1.15 
-5.06 
4.16 
-.91 
-2.97 
-1.47 
-2.36 
-1.06 
-2.22 
-2.24 
-1.44 
- .69 
3.46 

-0.659 

1.07 

- .31 
-*705 

------ 
------ 
.027 

-2.23 

-1.61 

------ 
------ 
------ 
------ 
-0.06 
- .14 
- .067 

.06 
- .343 

* 075 
.-.328 
.148 
.145 

-6.28 

0.248 

0.025 
- .Ob5 

* 057 
- .423 
. c16 
.082 

- .397 
0.298 

- - - - - - - 
1140 
295.3 - - - - - - - 
1.73 
44.67 
51.67 
21.67 
83.6 

57.6 

51.5 
15.73 

11.0 
22.1 

20.2 

19.67 
32.20 
8.13 

-17.26 
Q3.93 

6.6 
19.55 

16.3 

10.4 
4.13 
23 * 73 
7-07 
5.53 

Flight I 

Preflight I1 

Flight I1 
~. 

Preflight 111 

Flight I11 

Direct landings 

Preflight I 6.0 
2.27 
13.8 
4.07 
3-07 

-0.25 
-.25 
- .25 
- .25 
.052 

0.915 
-1.37 
.068 

- .539 
-2.69 

-0.049 
- .012 
-. 578 - .242 
- .349 

-77.35 
-78.7 
-6.8 
-.88 
1.08 

0.875 
-4.09 
2.0 

2.0 
-1.26 

-0 - 95 
2.44 
-2.26 
2.13 
6.38 

ABORT 

NONE 

Flight I 

Preflight I1 

Flight I1 NONE 

NONE 

0.864 1 -0.252 1-0.944 
Preflight 111 

3.27 I 0.077 1 -2.25 I -0.008 Flight I11 
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TABLE V.- AVERAGE TERMINAL CONDITIONS FOR KENDEZVOUS 

Variable 

Range, ft 

Range r a t e ,  
f t / s e c  

Total  impulse, 
lb-sec 

Total  t i m e ,  
min 

Run 

Base l i n e  

F l igh t  

P i l o t  A 

P i l o t  

A 
B 
C 

A 
B 
C 

Fl ight  
(3 runs> 

4.6 

1.8 

85,106 

17-19 

P i l o t  B 

Base l i n e  
( 6  runs)  

5.8 

2.3 

145,014 

16.63 

TABLE V I . -  "TRY PERFORMANCE 

10,411 
6,657 
9,551 

8,862 
10 7 330 
5 , 477 

I 
P i l o t  C I 
I 

Base l i n e  Fl ight  
(4  runs) l(1 run) 1 

10.8 

2 . 1  

3.6 I 

43.5 
46.5 
7.5 

4 

1.4 
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w 
0 

Pilot 

T" V I I S -  FLIGRT I1 PHYSICAL CONDITIONING EVALUATION (FROM REF. 5) 

Weights 
Jump rope Jump rope 

(both feet) (one foot) Push-up Sit-up 
50 l b  press 50 lb curl 

Jumping jacks 

(a) Base l ine 

A 

(b) Postflight 

No.: 101 No.: 100 No.: 100 No.: 28 No.: 40 NO.:  15 No.: 20 , 
Time: 81 sec Time: 62 sec Time: 46 sec Time: 41 sec Time: 93 sec Time: 67 sec Time: 45 sec ' 
Rate: 1.23 Rate: 1.61 Rate: 2-47 Rate: 0.683 Rate: 0.432 Rate: 0.224 Rate: 0.444 

I I I I I I I 

, B No.: 101 NO.: 80  NO.: 60 NO.: 35 NO.: 50 ,No.: 15 NO.:  15 
Time: 102 sec' Time: 58 sec Time: 34 sec Time: 45 sec1Time: 145 sec,Time: SO7 sec, Time: 65 sec 

No.: 101 
Time: 92 sec 
Rate: 1.09 

No.: 101 
Time: 98 sec 
Rate: 1.03 

NO. : loo NO.: loo NO.: 30 No.: 40 NO.: 15 No. : 20 
Time: 34 sec Time: 44 sec Time: 40 sec Time: 91 sec Time: 65 sec Time: 42 sec 
Rate: 2.56 Rate: 2.27 Rate: 0.750 Rate: 0.439 Rate: 0.231 Rate: 0.476 

Time: 47 sec Time: 29 sec Time: 41 sec Time: 132 sec Time: 86 sec Time: 35 sec 
Rate: 1.70 Rate: 2.07  rate: 0.854 Rate: 0.379 Rate: 0.174 Rate: 0.428 

No.: 80 NO.: 60 NO.: 35 No.: 50 NO.: 15 NO.: 15 

I - 



TABm VII1.- HAFXAF'Jl STEP TEST (FROM REF. 5) 

I n i t i d  examination I P r e f l i g h t  111 I P o s t f l i a t  111 

Score 

57 

64 

61 

P i l o t  

A 

B 

C 

Trips  Score Tr ips  

152 64 151 

150 61 155 

152 56 151 

Trips  

155 

151 

154 

Mission time, 
hr 

-2.0 p r e f l i g h t  
5.0 
12.0 
16.0 
20.5 

30.0 

34.0 
36.0 
40.0 
43.0 
48.0 
52.0 
55.0 
56.0 
64.0 
66.0 
76.0 
82.0 

89.0 
92.0 

105.0 
107.0 

24.0 

33.0 

84.0 

97.0 
99.0 

ll3.0 
115.0 
122.0 
123.0 
131.0 
139.0 
146.0 
148.0 
155.0 
15.0 
163.0 
165.5 p o s t f l i g h t  

P i l o t  A 

1-05 
104 
108 

112 

122 
108 

102 

102 

118 

110 
112 

105 

110 

108 

100 

120 

98 
102 

1-15 

110 
110 

Systo l ic  pressure 

P i l o t  B 

134 
128 

126 
110 

118 

126 
116 
108 

114 
120 

126 

125 

120 
112 
122 

118 

128 
162 
135 

Score 

58 

60 

54 
~~ 

P i l o t  c 

110 
108 
lo8 

118 

104 

102 

112 
112 

105 

103 

115 
92 
112 
1.07 

108 

108 
110 



w 
Iu 

7 
1 

1 Launch from earth 6 Lunar l aunch  and o r b i t  
2 Trans luna r  i n s e r t i o n  ( a )  D i r e c t  
3 ( a ,  by c) Trans luna r  ( b )  LOR rendezvous 

4 Lunar o r b i t  i n s e r t i o n  8 ( a ,  by c >  T r a n s e a r t h  
5 Lunar d e o r b i t  and l and ing  midcourse c o r r e c t i o n s  

midcourse c o r r e c t i o n s  7 T r a n s e a r t h  i n s e r t i o n  

( a )  D i r e c t  9 Reentry 
( b )  LOR 

Figure 1.- Mission prof i le .  



rCommand module 

Analog room 1 

L L O R  vehicle 
simul a t  or 

Control room 

Figure 2.-  Plan view of the simi11.ation facility. 

33 



Simulator room r 
/ 

rCommand module 

c 

Connecting 
/- tunnel 

1 
L L O R  vehicle 

simul at or 

Analog room 0 

Control room 

Figure 2.- Plan view of the simulaiion f a c i l i t y .  
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Figure 3.-  External view of comaand module simulator. L-62-1022 

~ -- - ~~ 



Figure 4.- C r e w  on s t a t i o n  at the c o n t r o l  and display panel. L-62-1023 

w wl 



w cn 

* 

L-64-3034 Figure 5 . -  View of the  LOR vehicle simulator and connecting tunnel. (From ref. 5.) 



(a )  Translunar inser t ion.  (b)  Lunar orbit inser t ion .  

( e )  Lunar landing (a) Reentry. 

Figure 6 . -  CRT displays. (From r e f .  5 . )  
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Figure 7.- Lunar landing terminal braking nominal altitude-velocity curve. (From ref. 5.) 
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V e l o c i t y  = 36,000 f t / s e c  
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Figure 8.- Reentry t ra jec tory .  (From ref. 5 . )  



Figure 9.- Trisextant. L-64-3035 
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On du ty  

u O f f  du ty  
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Figure 10.- Duty cycles. 
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Figure 12 . -  Flight 111 di rec t  landing. P i lo t  C 
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Figure 13.- Flight  I11 aborted d i rec t  landing. P i l o t  B .  
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Figure 14.- Three-dimensional p lo t  of f l i g h t  I11 rendezvous. P i l o t  C .  
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